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Abstract

We study the large-time behavior of systems driven by radial potentials, which
react to anticipated positions, xτ (t) = x(t) + τv(t), with anticipation increment
τ > 0.As a special case, such systems yield the celebratedCucker–Smalemodel for
alignment, coupled with pairwise interactions. Viewed from this perspective, such
anticipation-driven systems are expected to emerge into flocking due to alignment of
velocities, and spatial concentration due to confining potentials. We treat both the
discrete dynamics and large crowd hydrodynamics, proving the decisive role of an-
ticipation in driving such systems with attractive potentials into velocity alignment
and spatial concentration. We also study the concentration effect near equilibrium
for anticipated-based dynamics of pair of agents governed by attractive–repulsive
potentials.
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1. Introduction and Statement of Main Results

Consider the dynamical system{
ẋi (t) = vi (t)

v̇i (t) = −∇iHN (xτ
1 , . . . , xτ

N ), xτ
i = xτ

i (t) := xi (t) + τvi (t),
i = 1, . . . , N .
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When τ = 0, this is the classical N -particle dynamics for positions and velocities,
(xi (t), vi (t)) ∈ (Rd ,Rd), governed by the general HamiltonianHN (· · · ). If we fix
a small time step τ > 0, then the system is not driven instantaneously but reacts
to the positions xτ (t) = x(t) + τv(t), anticipated at time t + τ , where τ is the
anticipation time increment. Anticipation is an important feature in social dynamics
of N -agent and N -player systems, [20,22,30]. A key feature in the the large time
behavior of such anticipated dynamics is the dissipation of the anticipated energy

E(t) = 1

2N

∑
i

|vi |2 + 1

N
HN (xτ

1 , . . . , x
τ
N ),

at a rate given by

d

dt
E(t) = 1

N

∑
i

vi · v̇i + 1

N

∑
i

∇iHN (xτ
1 , . . . , x

τ
N ) · (vi + τ v̇i ) = − τ

N

∑
i

|v̇i |2, τ > 0.

We refer to the quantity on the right, τ
N

∑
i |v̇i |2, as the enstrophy of the system.

1.1. Pairwise Interactions

In this work we study the anticipation dynamics of pairwise interactions⎧⎪⎪⎨
⎪⎪⎩

ẋi (t) = vi (t)

v̇i (t) = − 1

N

N∑
j=1

∇U (|xτ
i − xτ

j |), xτ
i = xi (t) + τvi (t),

i = 1, . . . , N ,

(AT)

governed by a radial interaction potential U (r), r = |x|. This corresponds to the

Hamiltonian HN (xτ
1 , . . . , x

τ
N ) = 1

2N

∑
j,k

U (|xτ
j − xτ

k |), where the conservative

N -body problem (τ = 0) is now replaced by N -agent dynamics with anticipated
energy dissipation

d

dt
E(t) = − τ

N

∑
i

|v̇i |2, E(t) := 1

2N

∑
i

|vi |2 + 1

2N2

∑
i, j

U (|xτ
i − xτ

j |), τ > 0.

(1.1)
To gain a better insight into (AT), we consider the general system⎧⎪⎪⎨
⎪⎪⎩

ẋi = vi

v̇i = τ

N

N∑
j=1

�i j (v j − vi ) − 1

N

N∑
j=1

∇U (|xi − x j |), i = 1, . . . , N . (�U)

The anticipation (AT) is recovered as a special case of (�U) in terms of the
‘intermediate’ Hessians, �i j = D2Ui j , but since these intermediate Hessians are
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not readily available,1 we will consider (�U) for a general class of communication
matrices,�i j ∈ �, which respect the symmetry property satisfied by the D2Ui j ’s,

� := {
�(·, ·) ∈ Symd×d | �i j := �

(
(xi , vi ), (x j , v j )

) = � j i
}
.

The so-called (�U) system provides a unified framework for anticipation dynamics
by coupling general symmetric communication matrices, {� ∈ �}, together with
pairwise interactions induced by the potential U . In the particular case of U = 0,
the general system (�U) yields the celebrated Cucker–Smale (CS) model [13,14],
v̇i = τ

N

∑
j �i j (v j − vi ), a prototypical model for alignment dynamics in which

maxi, j |vi (t) − v j (t)| t→∞−→ 0. There is, however, one distinct difference: while the
CS model is governed by a scalar kernel involving geometric distances, �i j =
φ(|xi − x j |)Id×d , here (�U) allows for a larger class of communication protocols
based on matrix kernels, e.g., �i j = �(xi , x j ), with a possible dependence on
topological distances, [37]. The flocking behavior of suchmatrix-based CSmodels,
proved in Section 3.1, is considerably more intricate than in the scalar case, due to
the lack of a maximum principle.

The main purpose of this paper is to study the decisive role of anticipation
in driving the emergent behavior of (AT) and (�U), proving, under appropriate
assumptions, flocking and spatial concentration, see (1.9),(1.18) below,

|xi (t) − (�x0 + t�v0
)| + |vi (t) −�v0| t→∞−→ 0.

Viewed from the perspective of Cucker–Smale alignment dynamics, the large time
flocking behavior of (AT),(�U) is expected due to alignment of velocities. More-
over, our study [38] shows that confinement due to external forcing, −∇V (|xi |),
leads to spatial concentration, and it is known, e.g., [38, p. 351], that the dynamics
with external forcing coincides with pairwise interactions, − 1

N

∑
j ∇U (|xi −x j |),

in the special case of quadratic potential V (r) ∼ 1
2r

2. From this perspective, here
we prove spatial concentration for a (much) larger class of attractive potentials U .

We begin in Section 3 with the general system (�U). The basic bookkeeping
associated with (�U) quantifies its decay rate of the (instantaneous) energy

E(t) := 1

2N

∑
i

|vi |2 + 1

2N 2

∑
i, j

U (|xi − x j |),

which is given by

d

dt
E(t) = − τ

2N 2

∑
i, j

(v j − vi )��i j (v j − vi ). (1.2)

1 Expanding (AT) in τ we obtain (�U) with matrices �i j = D2Ui j :=
∫ 1

0
D2U (|(xi −

x j )+τ s(vi −v j )|) ds, depending on states (xi , vi ) and (x j , v j ). Their (pq) entries are given

by (D2Ui j )pq = (D2U )pq (|xi (t; τ
pq
i j ) − x j (t; τ

pq
i j )|), evaluated in anticipated positions,

x(t; τ
pq
i j ) = x + τ

pq
i j v, at some intermediate times, τ pq

i j ∈ [0, τ ].
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This will be contrasted with the dissipation of anticipated energy (1.1) in Section 5
below. To explore the enstrophy on the right of (1.2) we need to further elaborate
on properties of the communication matrices, �i j = �(·, ·), and their relations to
the potential U .

We start by rewriting the Hessian of the radial potential in the form

D2U (|xi−x j |) = U ′(ri j )
ri j

(I−x̂i j x̂
�
i j )+U ′′(ri j )̂xi j x̂�

i j , ri j := |xi−x j |, x̂i j := xi − x j
ri j

,

(1.3)
and observe that the symmetric matrix D2U (|xi − x j |) has a single eigenvalue

U ′′(ri j ) in the radial direction, xi −x j , and d−1 multiple of the eigenvalues
U ′(ri j )
ri j

in tangential directions (xi − x j )
⊥. We study the dynamics induced by potentials

U which are at least C2. As a result, U ′(0) = 0, and we may assume U (0) = 0
by adding a constant to it. We specify two main classes of potentials we will be
working with: convex potentials, U ′′(r) � 〈r〉2−β , studied in Section 3, and the
larger class of attractive potentials, U

′(r)
r � 〈r〉2−β , studied in Section 5.2 In either

case, we postulate that the potential is bounded, in the sense that

there exists a constant A > 0 such that |U ′′(r)| � A. (1.4)

It follows that |U ′(r)| �
∫ r

0
|U ′′(s)| ds �

∫ r

0
A ds = Ar , and hence that the

communication matrices are bounded:

−AId×d < D2U (·) � AId×d .

In particular, this rules out the important class of singular kernels (in both first-
and second-order dynamics), e.g., [8,9,17,21,26,29,32,34–36], which is left for
a future study. Finally, we mention the larger class of confining potentials, (2.1),
which includes the repulsive–attractive potentials studied in Section 6.

1.2. Anticipation Dynamics with Convex Potentials

Recall that the flocking behavior of CS model , see (3.8) below, is guaranteed
for scalar communication kernels, �(r) = φ(r)I, which satisfy a so-called fat tail
condition, [23], [31, Proposition 2.9],∫

φ(r) dr = ∞,

or — expressed in terms of its decay rate, φ(r) ∼ 〈r〉−β for 0 � β � 1. Since the
anticipation model (AT) can be viewed as a special case of (�U), it is natural to
quantify the convexity of U and positivity of � in terms of their ‘fat tail’ decay.

2 Throughout this paper,we use the notation 〈r〉s := (1+r2)s/2 for scalar r and 〈z〉 = 〈|z|〉
for vectors z.
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Assumption 1.1. (Convex potentials) There exist constants 0 < a < A and β such
that

a〈r〉−β � U ′′(r) � A, 0 � β � 1. (1.5)

Typically, the upper and lower bounds associated withU and its derivatives dictate
its profile near the origin, r  1 and respectively, near infinity, r � 1. It partic-

ular, the lower bound in (1.5) implies U ′(r) =
∫ r

0
U ′′(s) ds �

∫ r

0
a〈s〉−β ds �

a〈r〉−βr , and hence D2U in (1.3) satisfies the fat tail condition D2U (|x|) � a〈x〉−β

with 0 � β � 1.

Assumption 1.2. (Positive kernels) There exist constants 0 < φ− < φ+ and γ

such that

φ−(〈xi − x j 〉 + 〈vi − v j 〉)−γ � �i j � φ+, 0 � γ < 1. (1.6)

Observe that (�U) conserves momentum⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̇x = �v, �x := 1

N

∑
i

xi ,

�̇v = 0, �v := 1

N

∑
i

vi .
(1.7)

It follows that the mean velocity �v is constant in time, �v(t) = �v0, and hence
�x(t) = �x0+t�v0. Our firstmain result is expressed in terms of the energy fluctuations

δE(t) := 1

2N

∑
i

|vi −�v|2 + 1

2N 2

∑
i, j

U (|xi − x j |).

Theorem 1. (Anticipation dynamics (�U) — velocity alignment and spatial con-
centration) Consider the anticipation dynamics (�U). Assume a bounded convex
potential U with fat-tail decay of order β, (1.5), and a symmetric kernel matrix �

with a fat-tail decay of order γ , (1.6). If the decay parameters lie in the restricted
range 3β + 2max{β, γ } < 4, then there is sub-exponential decay of the energy
fluctuations

δE(t) � Ce−t1−η

, η = 2max{β, γ }
4 − 3β

< 1. (1.8)

We conclude that for large time, the dynamics concentrates in space with global
velocity alignment at sub-exponential rate,

|xi (t) −�x(t)| → 0, |vi (t) −�v0| → 0, �x(t) = �x0 + t�v0. (1.9)

The proof of Theorem 1 proceeds in two steps:
(i)A uniform bound, outlined in Lemma 2.1 below, on maximal spread of positions
|xi (t)|,

max
i

|xi (t)| � C∞〈t〉 2
4−3β , max

i
|vi (t)| � C∞〈t〉 2−β

4−3β , 0 � β � 1. (1.10)
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(ii) Observe that in view of (1.7), d
dt δE(t) = d

dt E(t). The energy dissipation (1.2)
combined with the bounds (1.6),(1.10) imply the decay of energy fluctuations

d

dt
δE(t) = d

dt
E(t) � − τ

2N
〈t〉− 2γ

4−3β
∑
i

|vi −�v|2.

To close the last bound we need a hypocoercivity argument carried out in Section 3,
which leads to the sub-exponential decay (1.8). The conclusion of sub-exponential
flocking

(xi − x j , vi − v j )
t→∞−→ 0 follows, and naturally, (xi , vi ) − (�x(t),�v0) → 0 since

this is the only minimizer of δE(t).
Since the anticipation dynamics (AT) can be viewed as a special case of (�U)

systemwith intermediate Hessians�i j = D2Ui j (outlined in footnote 1), Theorem
1 applies with γ = β.

Corollary 1.1. (Anticipation dynamics (AT) with convex potentials) Consider the
anticipated dynamics (AT) with bounded convex potential satisfying

a〈r〉−β � U ′′(r) � A, 0 � β <
4

5
.

Then there is sub-exponential decay of the energy fluctuations

δE(t) � Ce−t1−η

, η = 2β

4 − 3β
. (1.11)

The large time flocking behavior follows: the dynamics concentrates in space with
global velocity alignment at sub-exponential rate,

|xi (t) −�x(t)| → 0, |vi (t) −�v0| → 0, �x(t) := �x0 + t�v0. (1.12)

Remark 1.1. (Optimal result with improved fat-tail condition) Suppose we
strengthen assumption 1.1 with a more precise behavior of U ′′(r) ∼ 〈r〉−β , thus
replacing (1.5) with the requirement that there exist constants 0 < a < A and β

such that
a〈r〉−β � U ′′(r), U ′(r) � A〈r〉1−β, 0 � β � 1. (1.13)

Then the anticipation dynamics (�U) with a fat-tail kernel matrix � of order γ ,
(1.6), satisfies the sub-exponential decay

δE(t) � Ce−t1−η

, η = min
{
1,

2

4 − 3β

}
· max{β, γ } < 1. (1.14)

This improved decay follows from the corresponding improvement of the uniform
bound in Lemma 2.1 below which reads maxi |xi (t)| � 〈t〉. In the particular case
of β = γ , we recover an improved corollary 1.1 for anticipated dynamics (AT),
where the anticipated energy (see (1.16) below), satisfies an optimal decay of order

δE(t) � Ce−t1−η

, η = min
{ 2β

4 − 3β
, β
}

< 1.
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1.3. Anticipation Dynamics with Purely Attractive Potential

We now turn our attention to the main anticipation model (AT). We already
know the flocking behavior of (AT) for convex potentials, from the general consid-
erations of the (�U) system, summarized in corollary 1.1. In fact, the corresponding
communication matrix of (AT) prescribed in (1.3), D2U , has a special structure

of rank-one modification of the scalar kernel
U ′(r)
r

. This enables us to treat the

flocking behavior of (AT) for a larger class of purely attractive potentials.

Assumption 1.3. (Purely attractive potentials) There exist constants 0 < a < A
and β such that

a〈r〉−β � U ′(r)
r

, |U ′′(r)| � A, 0 � β � 1. (1.15)

Our result is expressed in terms of fluctuations of the anticipated energy

δE(t) := 1

2N

∑
i

|vi −�v|2 + 1

2N 2

∑
i, j

U (|xτ
i − xτ

j |). (1.16)

Theorem 2. (Anticipation dynamics (AT) with attractive potential) Consider the
anticipation dynamics (AT), and assume a bounded, purely attractive potential
with a fat tail decay of order β, (1.15). If the decay parameter β < 1

3 , then there is
sub-exponential decay of the anticipated energy fluctuations

δE(t) � Ce−t1−η

, η = 2β

1 − β
< 1. (1.17)

It follows that for large time, the anticipation dynamics concentrates in space with
global velocity alignment at sub-exponential rate,

|xi (t) −�x(t)| → 0, |vi (t) −�v0| → 0, �x(t) = �x0 + t�v0. (1.18)

Remark 1.2. This result is surprising if one interprets (AT) in its equivalent matrix
formulation (�U), since attractive potentials do not necessarily induce communi-
cation matrix � = D2U which is positive definite. In particular, the corresponding
‘regular’ (instantaneous) energy E(t) referred to in corollary 1.1 is not necessarily
decreasing; only the anticipated energy is.

The proof of Theorem 2, carried out in Section 5, involves twomain ingredients.
(i). First, we derive an a priori uniform bound on the maximal spread of anticipated
positions |xτ

i (t)|,
max
i

|xτ
i (t)| � C∞〈t〉 1

2−2β , 0 � β < 1. (1.19)

(ii). A second main ingredient for the proof of Theorem 2 is based on the energy
dissipation (1.1). The key step here is to relate the enstrophy in (1.1),

τ

N

∑
i

|v̇i |2 = τ

N

∑
i

∣∣∣ 1
N

∑
j

ci j (xτ
i − xτ

j )

∣∣∣2, ci j = U ′(|xτ
i − xτ

j |)
|xτ

i − xτ
j |

, (1.20)
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to the fluctuations of the (expected) positions. This is done by the following propo-
sition, interesting for its own sake, which deals with the local vs. global means of
arbitrary z j ∈ R

d :

Lemma 1.1. (Local and global means are comparable) Fix 0 < λ � 
 and weights
ci j

0 < λ � ci j � 
.

Then, there exists a constant C = C(λ,
) � 32
2

λ4
such that, for arbitrary z j ∈

R
d , it holds that

1

N 2

∑
i, j

∣∣zi − z j
∣∣2 � C(λ,
)

N

∑
i

∣∣∣ 1
N

∑
j

ci j (zi − z j )
∣∣∣2, C(
, λ) � 32


2

λ4
.

(1.21)

Remark 1.3. (Why a lemma on means?) The sum on the left of (1.21) quantifies
the fluctuations relative to the average�z := 1

N

∑
j z j ,

1

N 2

∑
i, j

∣∣zi − z j
∣∣2 = 2

N

∑
i

|zi −�z|2 .

Hence, (1.21) implies (and in fact is equivalent, up to scaling, to the statement about
the local means induced by weights θi j )

λ

N
� θi j � 


N
,

∑
j

θi j = 1.

If�zi (θ) :=
∑
j

θi jz j are the local means, then (1.21) with ci j = Nθi j implies

1

N

∑
i

|zi −�z|2 � 16

2

λ4

1

N

∑
i

|zi −�zi (θ)|2. (1.22)

Thus, the deviation from the local means is comparable to the deviation from the
global mean.

Applying (1.21) to (1.20) with the given bounds (1.15),(1.19), yields

d

dt
E(t) = − τ

N

∑
i

|v̇i |2

� − τ

N 2

A2

a4

(
max
i, j

〈xτ
i − xτ

j 〉
)−4β ∑

i, j

|xτ
i − xτ

j |2 � − τ

2N 2 〈t〉− 2β
1−β

∑
i, j

|xτ
i − xτ

j |2.

(1.23)
Observe that in this case, the enstrophy of the anticipated energy is bounded by the
fluctuations of the anticipated positions (compared with velocity fluctuations in the
‘regular’ energy decay (1.2)). We close the last bound by hypocoercivity argument
carried out in Section 5 which leads to the sub-exponential decay (1.17).
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1.4. Anticipation Dynamics with Attractive–Repulsive Potential

For attractive–repulsive potentials, the large time behavior of (AT) is signifi-
cantly more complicated, for the following two reasons:

• The topography of the total potential energy 1
2N2

∑
i, j U (|xi − x j |) which in-

cludes multiple local minima with different geometric configurations could be
very complicated, see e.g., [1,8,10,12,18,27,28,33] and the references therein.

• It is numerically observed in [20] that the decay of E(t) is of order O(t−1).
Therefore, one cannot expect for sub-exponential energydissipation rate, Ė(t) �
−〈t〉−ηE(t), or that its hypocoercivity counterpart will hold.

Here we focus on the second difficulty, and give a first rigorous result in this
direction.

Theorem 3. (Anticipation with repulsive–attractive potential)Consider the 2D an-
ticipated dynamics (AT) of N = 2 agents subject to repulsive–attractive potential
which has a local minimum at r = r0 > 0 where U ′′(r0) = a > 0. Then there
exists a constant ε > 0, such that if the initial data is close enough to equilibrium,∣∣|x1(0) − x2(0)| − r0

∣∣2 + |v1(0) − v2(0)|2 � ε, (1.24)

then the solution to (AT) satisfies the following algebraic decay:∣∣|x1(t)−x2(t)|−r0
∣∣ � C〈t〉−1 ln1/2 〈1 + t〉, |v1(t)−v2(t)| � C〈t〉−1/2. (1.25)

The proof, based on nonlinear hypocoercivity argument for the anticipated energy
is carried out in Section 6.

Remark 1.4. The detailed description of the dynamics outlined in the proof, reveals
that the radial component of the velocity, vr � 〈t〉−1 ln1/2 〈1 + t〉, decays faster
than its tangential part, vθ � 〈t〉−1/2. Therefore, although the dynamics of (6.1)
can be complicated at the beginning, it will finally settles as a circulation around
the equilibrium, provided the initial data is close enough to equilibrium.

1.5. Anticipation Hydrodynamics

The large crowd (hydro-)dynamics associated with (AT) is described by density
and momentum (ρ, ρu) governed by⎧⎨
⎩

ρt + ∇x · (ρu) = 0

(ρu)t + ∇x · (ρu ⊗ u) = −
∫

∇U (|xτ − yτ |) dρ(y), xτ := x + τu(t, x).

(1.26)
3 The large-time flocking behavior of (1.26) is studied in terms of Lemma 4.1—a
continuum version of the discrete lemma of means proved in Section 4. That is, we
obtain a sub-linear time bound on the spread of supp ρ(t, ·), which in turn is used

3 Under a simplifying assumption of a mono-kinetic closure.
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to control the enstrophy of the anticipated energy. In Section 7 we outline the proof
of our last main result, which states that if (1.26) admits a global smooth solution
then such smooth solution must flock, in agreement with the general paradigm for
Cucker–Smale dynamics discussed in [25,39].

Theorem 4. (Anticipation hydrodynamics: smooth solutionsmust flock) Let (ρ,u)

be a smooth solution of the anticipation hydrodynamics (1.26) with an attractive
potential subject to a fat tail decay, (1.15), of order β < 1

3 . Then there is sub-
exponential decay of the anticipated energy fluctuations

∫ ∫ (
1

2m0
|u(x) −�u0|2 +U (|xτ − yτ |)

)
dρ(x) dρ(y) � Ce−t1−η

, η = 2β

1 − β
< 1.

(1.27)
It follows that there is large time flocking, with sub-exponential alignment

|u(t, x) −�u0|2 dρ(x)
t→∞−→ 0, �u0 = 1

m0

∫
(ρu)0(x) dx, m0 =

∫
ρ0(x) dx.

In proposition 7.1 we verify the existence of global smooth solution (and hence
flocking) of the 1D system, (1.26), provided the threshold condition, u′

0(x) �
−C(τ,m0, a) holds, for a proper negative constant depending on τ,m0 and the
minimal convexity a = minU ′′ > 0.

2. A Priori L∞ Bounds for Confining Potentials

In this section we prove the uniform bounds asserted in (1.10) and (1.19),
corresponding to the anticipation dynamics in (�U) and, respectively, (AT). Due
to the momentum conservation (1.7), we may assume without loss of generality
that in both cases�x(t) = �v(t) ≡ 0. This will always be assumed in the rest of this
paper.

We recall the dynamics of (�U) assumes that U lies in the class of convex
potentials, (1.5), and the dynamics of (AT) assumes a larger class of attractive
potentials, (1.15). In fact, here we prove uniform bounds under a more general
setup of confining potentials.

Assumption 2.1. (Confining potentials) There exist constants a > 0, L � 0 and β

such that
U (r) � a

(
〈r〉2−β − L

)
, 0 � β � 1. (2.1)

Observe that attractive potentials (1.15) satisfy (2.1) with L = 1,

U (r) =
∫ r

0
U ′(s) ds �

∫ r

0
a〈s〉−βs ds = a

2 − β

(
〈r〉2−β − 1

)
. (2.2)

Thus, we have the increasing hierarchy of convex, attractive and confining poten-
tials. The class of confining potentials is much larger, however, and it includes
repulsive–attractive potentials (discussed in Section 6 below).
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Remark 2.1. General confining potentials need not be positive. But taking into
account that purely-attractive (and likewise— convex) potentials are positive, then
we can improve (2.2),

r2 � C max{rβ, 1}U (r) for some c > 0. (2.3)

Indeed, for r < 1, (1.15) implies U ′(r) � r and since U (0) = 0 then U (r) � r2.

For r � 1we have r2−β � C
(〈r〉2−β −1

)
with large enoughC1

(
e.g.,C1 >

√
2√

2−1

)
,

and (2.2) implies (2.3) with C = 2−β
a C1.

Lemma 2.1. (Uniform bound on positions for (�U) system) Consider the antic-
ipation dynamics (�U) with bounded positive communication matrix 0 � � �
φ+Id×d , andbounded confiningpotential (1.4),(2.1). Then the solution {(xi (t), vi (t))}
satisfies the a priori estimate

max
i

|xi (t)| � C∞〈t〉 2
4−3β , max

i
|vi (t)| � C∞〈t〉 2−β

4−3β , 0 � β � 1. (2.4)

Remark 2.2. Note that we require a positive communication matrix � but other-
wise, we do not insist on any fat tail condition (1.6).

Proof. Our proof is based on the technique introduced in [38, §2.2], in which we
prove uniform bounds in terms of the particle energy

Ei (t) := 1

2
|vi |2 + 1

N

∑
j

U (|xi − x j |). (2.5)

4 We start by relating the local energy to the position of particle i : using (2.1)
followed by Jensen inequality for the convex mapping5 x �→ 〈x〉2−β , we find that

Ei (t)

a
� 1

N

∑
j

(〈xi − x j 〉2−β − L
)

�
〈 1
N

∑
j

(xi − x j )
〉2−β − L = 〈xi 〉2−β − L .

It follows that the maximal spread of positions, maxi |xi (t)| does not exceed

X (t) �
(
E∞(t)

a
+ L

) 1
2−β

, X (t) := max
i

|xi (t)|, E∞(t) := max
i

Ei (t).

(2.6)

4 In fact Ei is not a proper particle energy, since
∑

i Ei �= NE (the pairwise potential is
counted twice). However, it is the ratio of the kinetic energy and potential energy in (2.5)
which is essential, as one would like to eliminate all the positive terms with indices i in (2.5),
in order to avoid exponential growth of Ei .
5 (〈r〉2−β)′′ = −β(2−β)r2〈r〉−2−β+(2−β)〈r〉−β = (2−β)

(
(1−β)r2+1

)〈r〉−2−β >
0 for β � 1.
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Next we bound the energy dissipation rate of each particle. By (1.6) the communi-
cation matrices �i j are non-negative and bounded,6 0 � �i j � φ+Id×d , and since∑

j v j = 0,

d

dt
Ei (t) = vi ·

⎛
⎝− 1

N

∑
j

∇U (|xi − x j |) + 1

N

∑
j

�i j (v j − vi )

⎞
⎠

+ 1

N

∑
j

∇U (|xi − x j |) · (vi − v j )

= 1

N

∑
j

�i j (v j − vi ) · vi − 1

N

∑
j

∇U (|xi − x j |) · v j

= − 1

2N

∑
j

�i jvi · vi − 1

2N

∑
j

�i j (v j − vi ) · (v j − vi )

+ 1

2N

∑
j

�i jv j · v j − 1

N

∑
j

(
∇U (|xi − x j |) − ∇U (|xi |)

)
· v j

� φ+E(0) +√
2E(0)

⎛
⎝ 1

N

∑
j

∣∣∇U (|xi − x j |) − ∇U (|xi |)
∣∣2
⎞
⎠

1/2

.

(2.7)

To bound the sum on the right, we use the fact that D2U is bounded, (1.4),
followed by (2.6), to find that

1

N

∑
j

|∇U (|xi − x j |) − ∇U (|xi |)|2

� sup
x

|D2U (|x|)|2 1

N

∑
j

|x j |2 � A2

N

∑
j

|x j |2

= A2

2N 2

∑
i, j

|xi − x j |2 � 2β A2 max
i

|xi |β × 1

N 2

∑
i, j

|xi − x j |2−β

� 2β A2Xβ 1

2N 2

∑
i, j

|xi − x j |2−β � 2β A2Xβ 1

2N 2

∑
i, j

(
U (|xi − x j |)

a
+ L

)

� 2β A2Xβ

(
E(0)

a
+ L

2

)
.

(2.8)

6 Observe that we do not use the fat tail decay (1.6).
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Therefore

d

dt
Ei (t) � φ+E(0) +√

2E(0)

(
2β A2Xβ

( E(0)

a
+ L

2

))1/2

� φ+E(0) +√
2E(0)

(
2β A2

( E∞
a

+ L
) β

2−β
( E(0)

a
+ L

2

))1/2 (2.9)

and taking maximum among all i’s we have7

d

dt
E∞(t) � φ+E(0) +√

2E(0)

(
2β A2

( E∞(t)

a
+ L

) β
2−β

( E(0)

a
+ L

2

))1/2

.

(2.10)
Set f (t) := E∞(t)+aL , then the last inequality tells us f ′ � C1 +C2 f α with

α := β
(4−2β)

, and since by assumption α < 1/2, then

f � 〈t〉 1
1−α = 〈t〉 2(2−β)

4−3β ,

which implies the uniform bound on velocities in (2.4),

max
i

|vi (t)| � 2
√
E∞(t) + aL � 〈t〉 2−β

4−3β .

The uniform bound on positions, maxi |xi (t)|, follows in view of (2.6). ��
Lemma 2.1 applies, in particular, to the anticipation dynamics (AT) with convex

potential, so that D2U is positive definite. Next, we prove uniform bounds for more
general confining U ’s.

Lemma 2.2. (Uniform bound on anticipated positions) Consider the anticipation
dynamics (AT) with bounded confining potential (1.4),(2.1). Then the solution of
the anticipation dynamics (AT) satisfies the a priori estimate

max
i

|xτ
i (t)| � C∞〈t〉 1

2−2β , 0 � β < 1. (2.11)

Remark 2.3. The a priori bound (2.11) is weaker than Lemma 2.1 and may not be
optimal for β close to 1. We do not pursue an improved bound since it does not
provide an increased range of β’s for which Theorem 2 holds.

Proof of Lemma 2.2. The key quantity for proving the priori bound (2.11) is the
‘anticipated particle energy’ in (AT),

Ei (t) := 1

2
|vi |2 + 1

N

∑
j

U (|xτ
i − xτ

j |). (2.12)

7 To be pedantic at this point, the time derivative on the left (2.10) exists for almost all t’s
by Rademacher theorem, where it coincides with the maximal time derivatives on the left of
(2.9)i .
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Similar to the previous proof, the confining property ofU implies that the diameter
of anticipated positions, maxi |xτ

i (t)|, does not exceed

X (t) �
(E∞(t)

a
+ L

) 1
2−β

, X (t) := max
i

|xτ
i (t)|, E∞(t) := max

i
Ei (t).
(2.13)

Nextwe bound the energy dissipation rate of each particle: since
∑

j (v j+τ v̇ j ) = 0,

d

dt
Ei (t) = vi · v̇i + 1

N

∑
j

∇U (|xτ
i − xτ

j |) · (vi + τ v̇i − v j − τ v̇ j )

= − τ |v̇i |2 − 1

N

∑
j

∇U (|xτ
i − xτ

j |) · (v j + τ v̇ j )

= − τ |v̇i |2 − 1

N

∑
j

(∇U (|xτ
i − xτ

j |) − ∇U (|xτ
i |)
) · (v j + τ v̇ j ).

(2.14)
As before, the boundedness of D2U followed by (2.13) to find imply

1

N

∑
j

∣∣∇U (|xτ
i − xτ

j |) − ∇U (|xτ
i |)
∣∣2 � 2β A2X β

(E(0)

a
+ L

2

)
. (2.15)

Inserting (2.15) into theRHSof (2.14) and adding the energy-enstrophy balance
(1.1) we find8

d

dt
(E(t) + Ei (t))

� − τ

N

∑
j

|v̇ j |2 − τ |v̇i |2 + c

N

∑
j

|v j |2 + cτ 2

N

∑
j

|v̇ j |2

+ 1

4cN

∑
j

∣∣∇U (|xτ
i − xτ

j |) − ∇U (|xτ
i |)
∣∣2

� − τ(1 − cτ)

N

∑
j

|v̇ j |2 − τ |v̇i |2 + 2c
(E(0) + aL

)+ 1

4c
2β A2X β

(E(0)

a
+ L

2

)

� 2

τ

(E(0) + aL
)+ τ

4
2β A2X β

(E(0)

a
+ L

2

)
, (taking c = 1/τ).

By taking maximum among all i ,

d

dt
(E(t) + E∞(t)) � 2

τ

(E(0) + aL
)+ τ

4
2β A2X β

(E(0)

a
+ L

2

)

� 2

τ

(E(0) + aL
)+ τ

4
2β A2

(E∞(t)

a
+ L

) β
2−β

(E(0)

a
+ L

2

)

8 Note that a confining potential need not be positive yet U � −aL and hence
1/2N

∑
j |v j |2 � E(0) + aL .
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The last inequality tells us that f (t) := E(t)+E∞(t)+aL satisfies f ′ � C1+C2 f α

with α := β
2−β

. Since by assumption α < 1, then

f � 〈t〉 1
1−α = 〈t〉 2−β

2−2β ,

and the uniform bound (2.11) follows in view of (2.13). ��

3. Anticipation with Convex Potentials and Positive Kernels

Equipped with the uniform bound (2.11), we turn to prove Theorem 1 by
hypocoercivity argument. In [38] we use hypocoercivity to prove the flocking with
quadratic potentials. Here, we make a judicious use of the assumed fat tail condi-
tions, (1.6),(1.5), to extend these arguments for general convex potentials.

Proof of Theorem 1. We introduce themodified energy, Ê(t), by adding a multiple
of the cross term 1/N

∑
i xi · vi ,

Ê(t) := E(t) + ε(t)

N

∑
i

xi (t) · vi (t).

We claim that with a proper choice ε(t), the modified energy is positive definite.
Indeed, the convex (hence attractive) potential satisfies the pointwise bound (2.3),
and together with the uniform bound (1.10) they imply

|ε(t) 1
N

∑
i

xi · vi | � 1

4N

∑
i

|vi |2 + ε2(t)

N

∑
i

|xi |2 = 1

4N

∑
i

|vi |2 + ε2(t)

2N 2

∑
i, j

|xi − x j |2

� 1

4N

∑
i

|vi |2 + ε2(t)C max
{
(2X (t))β , 1

} 1

2N 2

∑
i, j

U (|xi − x j |)

� 1

4N

∑
i

|vi |2 + ε2(t)C
(
(2C∞)β + 1

)〈t〉 2β
4−3β

1

2N 2

∑
i, j

U (|xi − x j |).

Therefore it suffices to choose

ε(t) = ε0〈t〉−α, α >
β

4 − 3β
, (3.1)

with small enough ε0 > 0 and any α >
β

4−3β which is to be determined later, to

guarantee |ε(t)/N ∑i xi · vi | � E(t)/2, hence the positivity of Ê(t) � E(t)/2 > 0.
Next, we turn to verify the coercivity of Ê(t). First notice that Lemma 2.1

implies the following L∞ bound on xτ
i :

|xτ
i | � |xi | + τ |vi | � (1 + τ)C∞〈t〉 2

4−3β

This together with the assumed fat-tails of � and D2U , imply their lower-bounds:
by (1.6) �i j (t) are bounded from below by

�i j (t) � φ−(t) := c〈t〉− 2γ
4−3β , (3.2)
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and integrating (1.5) U ′′(r) � a〈r〉−β twice, implies U has the lower bound (2.2)

U (|xi −x j |) � c|xi −x j |2〈|xi −x j |〉−β � |xi −x j |2ψ−(t), ψ−(t) := c〈t〉− 2β
4−3β .

(3.3)
Now, we turn to conduct hypocoercivity argument based on the energy estimate

(1.2). To this end, we append to E(t), a proper multiple of the cross term
∑

xi · vi ,
consult e.g., [16,38]. Using the symmetry of �i j , the time derivative of this cross
term is given by

d

dt

1

N

∑
i

xi · vi

= 1

N

∑
i

|vi |2 + 1

N

∑
i

xi ·
⎛
⎝− 1

N

∑
j

∇U (|xi − x j |) + 1

N

∑
j

�i j (v j − vi )

⎞
⎠

= 1

2N2

∑
i, j

|vi − v j |2 − 1

2N2

∑
i, j

(xi − x j ) · ∇U (|xi − x j |)

+ 1

2N2

∑
i, j

�i j (v j − vi ) · (xi − x j ).

(3.4)
We prepare three bounds. Noticing that sinceU is convexU ′(r) is increasing, hence
U (r) =

∫ r

0
U ′(s) ds � rU ′(r) implies

1

2N 2

∑
i, j

(xi − x j ) · ∇U (|xi − x j |) = 1

2N 2

∑
i, j

U ′(|xi − x j |)|xi − x j |

� 1

2N 2

∑
i, j

U (|xi − x j |).
(3.5a)

Using the weighted Cauchy-Schwarz twice — weighted by the positive definite
0 < �i j � φ+, and then by the yet-to-be determined κ(t) > 0,

∣∣∣ 1

2N 2

∑
i, j

�i j (v j − vi ) · (xi − x j )

∣∣∣
� κ

4N 2

∑
i, j

�i j (vi − v j ) · (vi − v j ) + 1

4κN 2

∑
i, j

�i j (xi − x j ) · (xi − x j )

� κ(t)

4N 2

∑
i, j

�i j (vi − v j ) · (vi − v j ) + φ+
4κ(t)N 2

∑
i, j

|xi − x j |2

(3.5b)
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Recall that with the choice of ε(t) = ε0〈t〉−α in (3.1), we have |ε̇(t)| � α
ε(t)

〈t〉 . We

have the final bound

∣∣∣ ε̇(t)
N

∑
i

xi · vi
∣∣∣ � |ε̇(t)| 1

2δ(t)N 2

∑
i, j

|xi |2 + |ε̇(t)| δ(t)

2N 2

∑
i, j

|vi |2

� α

2δ(t)〈t〉
ε(t)

2N 2

∑
i, j

|xi − x j |2 + αδ(t)

2〈t〉
ε(t)

2N 2

∑
i, j

|vi − v j |2

(3.5c)
Adding (3.4) to the energy decay (1.2) we find that the dissipation rate of the
modified energy Ê(t) := E(t) + ε(t)/N

∑
i xi (t) · vi (t)) does not exceed, in view

of (3.5a)—(3.5c),

d

dt
Ê(t) �

(
−τ + κ(t)

2
ε(t)

)
1

2N 2

∑
i

�i j (vi − v j ) · (vi − v j )

+
(

φ+
2κ(t)

ε(t) + α

2δ(t)〈t〉ε(t)
)

1

2N 2

∑
i, j

|xi − x j |2

+
(

ε(t) + αδ(t)

2〈t〉 ε(t)

)
1

2N 2

∑
i, j

|vi − v j |2

− ε(t)
1

2N 2

∑
i, j

U (|xi − x j |)

=: I + I I + I I I + I V .

(3.6)

To complete the (hypo-)coercivity argument, we guarantee the terms on the right
of (3.6) are negative. To this end, set κ(t) = τ/ε(t) so the first pre-factor is less
than −τ/2 and hence

I � −τ

2
φ−(t)

1

2N 2

∑
i, j

|vi − v j |2 = −τ

2
φ−(t)

1

N

∑
i

|vi |2, κ(t) = τ

ε(t)
.

Next, we set δ(t) = δ0

ε(t)〈t〉 so that the second pre-factor �
(

φ+
τ

+ α

2δ0

)
ε2(t),

hence the second term does not exceed, in view of (3.3)

I I �
(

φ+
τ

+ α

2δ0

)
ε2(t)

ψ−(t)

1

2N 2

∑
i, j

U (|xi − x j |), δ(t) = δ0

ε(t)〈t〉 .

With these choices of κ and δ, the third term does not exceed

I I I �
(

ε(t) + αδ0

2〈t〉2
)

1

2N 2

∑
i, j

|vi − v j |2 =
(

ε(t) + αδ0

2〈t〉2
)

1

N

∑
i

|vi |2
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We conclude that

d

dt
Ê(t) �

(
−τ

2
φ−(t) + ε(t) + αδ0

2〈t〉2
)

1

N

∑
i

|vi |2

+
(

−ε(t) +
(φ+

τ
+ α

2δ0

) ε2(t)

ψ−(t)

)
1

2N 2

∑
i, j

U (|xi − x j |).
(3.7)

Now set α � 2γ

4 − 3β
so that φ−(t) decays no faster than ε(t); moreover, φ−(t)

decays no faster than 〈t〉−2 since 6β + 2γ � 8, and hence, with small enough
ε0, δ0 > 0, the first pre-factor on the right of (3.7) does not exceed −τφ−(t)/4.

Next, let α � 2β

4 − 3β
so that ε(t)/ψ−(t) is bounded: hence, with small enough

ε0  δ0, the second pre-factor on the right of (3.7) does not exceed −ε(t)/2. We
conclude that

d

dt
Ê(t) � −φ−(t)

N

∑
i

|vi |2 − ε(t)

2N2

∑
i, j

U (|xi − x j |) � −〈t〉−η Ê(t), η = 2max{β, γ }
4 − 3β

.

This implies the sub-exponential decay of Ê , and thus that of the comparable E . ��

3.1. Flocking of Matrix-Based Cucker–Smale Dynamics

The Cucker–Smale model [13,14]⎧⎪⎪⎨
⎪⎪⎩
ẋi = vi

v̇i = τ

N

N∑
j=1

�i j (v j − vi ),
(3.8)

is a special case of (�U) with no external potential U = 0, which formally corre-
sponds to β = 0, in which case Theorem 1 would yield flocking for γ < 1/2. Here
we justify these formalities and prove the velocity alignment of (3.8) (no spatial
concentration effect, however), under a slightly larger threshold.

Proposition 3.1. (Alignment of (3.8) model with positive kernels) Consider the
Cucker–Smale dynamics (3.8)with symmetricmatrix kernel� satisfying (compared
to (1.6) with v ≡ 0) for some constants 0 < φ− < φ+ and γ ,

φ−〈xi − x j 〉−γ � �(xi , x j ) � φ+, 0 � γ < 2/3. (3.9)

Then there is sub-exponential decay of the energy fluctuations

δE(t) � Ce−t1−η

, η = 3γ

2
, δE(t) := 1

2N

∑
i

|vi −�v|2. (3.10)

It follows that there is a flock formation around the mean �x(t) with large time
velocity alignment at sub-exponential rate:

vi (t) → �v0, xi (t) −�x(t) → x∞
i , �x(t) := �x0 + t�v0, (3.11)

for some constants x∞
i .
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The proof is similar but follows a slightly different strategy from that of Theorem
1: we start by a priori estimate for the particle energy Ei , and then proceed to
controlling the position 〈xi 〉, which in turn gives enough energy dissipation.

Proof. Define the particle energy

Ei (t) := 1

2
|vi |2, E∞(t) = max

i
Ei (t). (3.12)

Observe that this satisfies

d

dt
Ei (t) = 1

N

N∑
j=1

�i j (v j − vi ) · vi

= − 1

2N

N∑
j=1

�i j (v j − vi ) · (v j − vi ) − 1

2N

N∑
j=1

�i jvi · vi + 1

2N

N∑
j=1

�i jv j · v j

� − φ−(t)
|vi |2
2

+ φ+E(t),

(3.13)
where φ−(t), is a time-dependent lower-bound of the symmetric �(xi (t), x j (t))
which can be taken, in view of (3.9),

�(xi (t), x j (t)) � φ−(t), φ−(t) := φ− · 〈2X (t)〉−γ , X (t) = max
i

|xi (t)|.
(3.14)

Taking i as the particle with the largest Ei , then

d

dt
E∞(t) � −φ−(t)E∞(t) + φ+E(t) � −φ−(t)E∞(t) + φ+E(0). (3.15)

This implies
E∞(t) � E∞(0) + φ+E(0)t. (3.16)

Next, we notice that

d

dt
X (t) � max

i
|vi | �

√
2E∞(t) �

√
2(E∞(0) + φ+E(0)t). (3.17)

This yields X (t) � C〈t〉3/2, and in view of the fat tail (1.6), we end with the lower
bound

φ−(t) � c〈t〉− 3γ
2 with c = (2C)−γ .

Therefore the energy dissipation (1.2) gives

d

dt
E(t) � −φ−(t)E(t) � −c〈t〉− 3γ

2 E(t), (3.18)

which implies the sub-exponential decay (3.10), E(t) � E(0)e−c〈t〉1−η

with η =
3γ
2 < 1.
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Equipped with this sub-exponential decay of E(t), we revisit (3.15): this time
it implies

E∞(t) � e−�−(t)E∞(0) + φ+
∫ t

0
e−�−(t−s)E(s) ds

� C〈t〉e−c〈t〉1−η

, �−(t) :=
∫ t

0
φ−(s) ds � c〈t〉1−η

(3.19)

This shows the sub-exponential decay of the kinetic energy of each agent, E∞(t),

independently of N , |vi (t) −�v0| → 0. As a result, xi (t) = xi (0) +
∫ t

0
vi (s) ds,

converges as t → ∞ since the last integral converges absolutely in view of |vi (t)| �√
2E∞(t). ��

4. Local Versus Global Weighted Means

In this section we prove Lemma 1.1 about discrete means, which in turn will
be used in proving the hypocoercivity of the discrete anticipation dynamics (AT).
We also treat the corresponding continuum lemma of means in Lemma 4.1, which
is used in the hypocoercivity of the hydrodynamic anticipation model (1.26).

We begin with the proof of the Lemma of means 1.1:

Proof of Lemma 1.1. We first treat the scalar setup, in which case we may assume,
without loss of generality that the zi ’s are rearranged in a decreasing order, z1 �
z2 � · · · � zN , and have a zero mean

∑
j z j = 0, and we need to bound the

fluctuations on the left of (1.21)which amount to
1

N 2

∑
i, j |zi−z j |2 = 2

N

∑
i |zi |2.

Let i0 be the smallest index i such that

1

N

i−1∑
j=1

z j � λ

2(
 − λ)
zi . (4.1)

Noticing that if i+ is the maximal index of the positive entries, zi�i+ � 0, then
(4.1) clearly holds for i > i+ (where LHS > 0 > RHS), hence i0 � i+, and since
LHS is increasing (for i � i+) and RHS is decreasing, see Fig. 1 below, (4.1) holds
for all i � i0,

1

N

i−1∑
j=1

z j � λ

2(
 − λ)
zi , i � i0. (4.2)
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For i < i0 we have zi � 0, hence

1

N

∑
j

ci j (zi − z j ) = 1

N

i∑
j=1

ci j (zi − z j ) + 1

N

N∑
j=i+1

ci j (zi − z j )

� 


N

i∑
j=1

(zi − z j ) + λ

N

N∑
j=i+1

(zi − z j )

= −


N

i∑
j=1

z j + λ

N

i∑
j=1

z j + 


N

i∑
j=1

zi + λ

N

N∑
j=i+1

zi

� −
 − λ

N

i−1∑
j=1

z j + λzi , i < i0,

(4.3)

and therefore, by the minimality of i0 in (4.2)

1

N

∑
j

ci j (zi − z j ) � − 
 − λ

2(
 − λ)
λzi + λzi = λ

2
zi � 0, i < i0.

It follows that

1

N

i0−1∑
i=1

∣∣∣ 1
N

∑
j

ci j (zi − z j )
∣∣∣2 � λ2

4

1

N

i0−1∑
i=1

z2i . (4.4)

Else, for i � i0, (4.2) implies

zi � zi0 � 2(
 − λ)

λ

1

N

i0−1∑
j=1

z j , i � i0.

It follows that for all positive entries, 0 � zi � zi0 ,

1

N

i+∑
i=i0

z2i � z2i0 � 4(
 − λ)2

λ2

1

N 2

⎛
⎝i0−1∑

j=1

z j

⎞
⎠

2

� 4(
 − λ)2

λ2

1

N

i0−1∑
j=1

z2j (4.5)

Therefore, by (4.5),(4.4),

1

N

∑
zi�0

z2i = 1

N

i0−1∑
i=1

z2i + 1

N

i+∑
i=i0

z2i

�
(
1 + 4(
 − λ)2

λ2

)
1

N

i0−1∑
j=1

z2j

� 4

λ2

(
1 + 4

(


λ
− 1

)2) 1

N

∑
i

∣∣∣ 1
N

∑
j

ci j (zi − z j )
∣∣∣2.

(4.6)
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Now apply (4.6) to zi replaced by −zi , to find the same upper-bound on the
negative entries

1

N

∑
zi�0

z2i � 4

λ2

(
1 + 4

(


λ
− 1

)2) 1

N

∑
i

∣∣∣ 1
N

∑
j

ci j (zi − z j )
∣∣∣2. (4.7)

The scalar result follows from (4.6),(4.7). For the d-dimensional case, notice given
that

∑
i zi = 0

∑
i, j

|zi − z j |2 = 2
∑
i

|zi |2 =
d∑

k=1

∑
i

|zki |2,

∑
i

∣∣∣ 1
N

∑
j

ci j (zi − z j )
∣∣∣2 =

d∑
k=1

∑
i

∣∣∣ 1
N

∑
j

ci j (z
k
i − zkj )

∣∣∣2

where superscript stands for component. Therefore the conclusion follows by ap-
plying the scalar result to the components of zi = {zki }k for each fixed k, ending
with the same constant C(
, λ) which is independent of d. ��

Next, we extend the result from the discrete framework to the continuum.

Lemma 4.1. (Local and global means are comparable) Let (�,F , μ) be a proba-
bility measure, and X : � → R

d be a random variable with finite second moment,∫
|X(ω′)|2 dμ(ω′) < ∞. Then, for any measurable c = c(ω, ω′) : � × � �→ R

satisfying

0 < λ � c(ω, ω′) � 
,

there holds

∫∫
|X(ω) − X(ω′)|2 dμ(ω) dμ(ω′) � 32


2

λ4

∫ ∣∣∣∣
∫

c(ω, ω′)
(
X(ω) − X(ω′)

)
dμ(ω′)

∣∣∣∣
2

dμ(ω).

Observe that the quantity on the left can be equally expressed as the amount of
fluctuations relative to the mean �X
∫∫

|X(ω) − X(ω′)|2 dμ(ω) dμ(ω′) = 2
∫

|X(ω) − �X|2 dμ(ω), �X :=
∫

X(ω′) dμ(ω′),

and in particular, Dirac measure dμ = 1

N

∑
j

δ(x− z j ) recovers the discrete case

of Lemma 1.1.
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Proof. Wefirst prove the 1D case, for which themapX, denoted by X , may assume
a zero mean, �X = 0, without loss of generality. Take ω with X (ω) := x � 0, then

∫
c(ω, ω′)(x − X (ω′)) dμ(ω′)

= −
∫

ω′ :X (ω′)>x
c(ω, ω′)(X (ω′) − x) dμ(ω′) +

∫
ω′ :X (ω′)�x

c(ω, ω′)(x − X (ω′)) dμ(ω′)

� − 


∫
ω′ :X (ω′)>x

(X (ω′) − x) dμ(ω′) + λ

∫
ω′ :X (ω′)�x

(x − X (ω′)) dμ(ω′)

= − (
 − λ)

∫
ω′ :X (ω′)>x

(X (ω′) − x) dμ(ω′) + λx

� − (
 − λ)

∫
ω′ :X (ω′)>x

X (ω′) dμ(ω′) + λx

Let

x0 := sup {x : Y (x) � 0} , Y (x) =
∫

ω′:X (ω′)>x
X (ω′) dμ(ω′) − λ

2(
 − λ)
x .

(4.8)
Since limx→∞ Y (x) = −∞ and Y (0) � 0, x0 is finite and non-negative. It is clear
that Y (x) is decreasing and right-continuous. Therefore Y (x) � 0 for any x < x0,
and Y (x) � 0 for any x � x0.

If x � x0, then∫
c(ω, ω′)(x − X (ω′)) dμ(ω′) � −(
 − λ)

λ

2(
 − λ)
x + λx = λ

2
x (4.9)

Thus taking square and integrating in ω with x = X (ω) � x0 � 0 gives

∫
ω:X (ω)�x0

(∫
c(ω, ω′)(X (ω) − X (ω′)) dμ(ω′)

)2

dμ(ω) � λ2

4

∫
ω:X (ω)�x0

X2(ω) dμ(ω).

(4.10)
Then we claim that the above integral on {ω : X (ω) � x0} is enough to get the

conclusion. Notice that for any ε > 0, one has Y (x0 − ε) � 0, i.e.,

x0 − ε � 2(
 − λ)

λ

∫
ω:X (ω)>x0−ε

X (ω′) dμ(ω′) (4.11)

and therefore

(x0 − ε)2 � 4(
 − λ)2

λ2

(∫
ω:X (ω)>x0−ε

X (ω′) dμ(ω′)
)2

� 4(
 − λ)2

λ2

(∫
ω:X (ω)>x0−ε

X (ω′)2 dμ(ω′)
)(∫

ω:X (ω)>x0−ε

dμ(ω′)
)

� 4(
 − λ)2

λ2

∫
ω:X (ω)>x0−ε

X (ω′)2 dμ(ω′)
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Taking ε → 0, noticing that the RHS integral domain {ω : X (ω) > x0 − ε}
converges to {ω : X (ω) � x0}, we get

x20 � 4(
 − λ)2

λ2

∫
ω:X (ω)�x0

X (ω′)2 dμ(ω′) (4.12)

Thus, using (4.12) and (4.10) we find

∫
ω′:X (ω′)�0

X (ω′)2 dμ(ω′)

=
∫

ω′:0�X (ω′)<x0
X (ω′)2 dμ(ω′) +

∫
ω′:X (ω′)�x0

X (ω′)2 dμ(ω′)

�
(
4(
 − λ)2

λ2
+ 1

)∫
ω′:X (ω′)�x0

X (ω′)2 dμ(ω′)

�
(
4(
 − λ)2

λ2
+ 1

)
4

λ2

∫
[x0,∞)

(∫
c(ω, ω′)(X (ω) − X (ω′)) dμ(ω′)

)2

dμ(ω).

Apply the last boundwith X (·) replacedby−X (·) tofind that the
∫

ω′:X (ω′)�0
X (ω′)2 dμ(ω′)

satisfies the same bound on the right, which completes the scalar part of the proof.
For the d-dimensional case with X = (X1, . . . , Xd), notice that

∫
|X(ω′)|2 dμ(ω′) =

d∑
k=1

∫
|Xk(ω

′)|2 dμ(ω′),

and similarly,

∫ ∣∣∣∣
∫

c(ω, ω′)(X(ω) − X(ω′)) dμ(ω′)
∣∣∣∣
2

dμ(ω)

=
d∑

k=1

∫ ∣∣∣∣
∫

c(ω, ω′)(Xk(ω) − Xk(ω
′)) dμ(ω′)

∣∣∣∣
2

dμ(ω)

Applying the 1D result to the random variable Xk gives

∫
|Xk(ω

′)|2 dμ(ω′) � C(λ,
)

∫ ∣∣∣∣
∫

c(ω, ω′)(Xk(ω) − Xk(ω
′)) dμ(ω′)

∣∣∣∣
2

dμ(ω).

(4.13)k

Summing (4.13)k recovers the desired resultwith the constantC(
, λ) independent
of d. ��
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5. Anticipation Dynamics with Attractive Potentials

In this section we prove the flocking behavior of (AT) asserted in Theorem 2.
Here, we treat the larger class of attractive potentials, thus extending the case of
convex potentials of Theorem 1. The starting point is the anticipated energy balance
(1.1)

d

dt
E(t) = − τ

N

∑
i

|v̇i |2.

Remark 5.1. We note in passing that the first-order system

ẋi = − 1

N

N∑
j=1

∇U (|xi − x j |)

satisfies an energy estimate, reminiscent of the energy-enstrophy balance in the
anticipation dynamics (AT),

d

dt

1

2N 2

∑
i, j

U (|xi − x j |) = − 1

N

∑
i

|ẋi |2.

Proof of Theorem 2. We aim to conduct a hypocoercivity argument to complement
the anticipated energy estimate (1.1). To this end, we use the ‘anticipated’ cross
term

d

dt
(− 1

N

∑
i

xτ
i · vi ) = 1

N

∑
i

(−(vi + τ v̇i ) · vi − xτ
i · v̇i

)

� 1

N

∑
i

(
−|vi |2 + τ(

τ

2
|v̇i |2 + 1

2τ
|vi |2) + 1

2
(|xτ

i |2 + |v̇i |2)
)

� −1

2

1

N

∑
i

|vi |2 + 1

2

1

N

∑
i

|xτ
i |2 + τ 2 + 1

2

1

N

∑
i

|v̇i |2.
(5.1)

Consider the modified anticipated energy Ê(t) := E(t) − ε(t) 1
N

∑
i x

τ
i · vi , where

ε(t) > 0 is small, decreasing, and is yet to be chosen. We first need to guarantee
that this modified energy is positive definite, and in fact — comparable to E(t),∣∣ε(t) 1

N

∑
i

xτ
i · vi

∣∣ � E(t)

2
= 1

4N

∑
i

|vi |2 + 1

4N 2

∑
i, j

U (|xτ
i − xτ

j |). (5.2)

Indeed, notice that

|ε(t) 1
N

∑
i

xτ
i · vi | � 1

4N

∑
i

|vi |2 + ε2(t)
1

N

∑
i

|xτ
i |2

� 1

4N

∑
i

|vi |2 + ε(t)2C max
{
(2X )β , 1

} 1

2N2

∑
i, j

U (|xτ
i − xτ

j |)

� 1

4N

∑
i

|vi |2 + ε2(t)C
(
(2C∞)β + 1

)〈t〉 β
2−2β

1

2N2

∑
i, j

U (|xτ
i − xτ

j |).
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The second inequality is obtained similarly to (2.15) and using (2.3), and the third
inequality uses Lemma 2.2. Therefore it suffices to choose

ε(t) = ε0(10 + t)−α, α � β

4 − 4β
(5.3)

with small enough ε0 to guarantee (5.2).
We now turn to verify the (hypo-)coercivity of Ê(t),

d

dt

(
E(t) − ε(t)

1

N

∑
i

xτ
i · vi

)

� − τ

N

∑
i

|v̇i |2 − ε(t)

2

1

N

∑
i

|vi |2

+ ε(t)

(
1

2

1

N

∑
i

|xτ
i |2 + τ 2 + 1

2

1

N

∑
i

|v̇i |2
)

+ |ε̇(t)| 1
N

∑
i

|xτ
i · vi |

� −
(

τ − ε(t)
τ 2 + 1

2

)
1

N

∑
i

|v̇i |2

− ε(t) − |ε̇(t)|
2

1

N

∑
i

|vi |2 + ε(t) + |ε̇(t)|
2

1

N

∑
i

|xτ
i |2

(5.4)
The first pre–factor on the right of (5.4) is less than − τ

2 for small enough ε0. The
second pre-factor is negative since

|ε̇(t)| = αε0(10 + t)−α−1 � α

10
ε(t).

It remains to control the last term on the right of (5.4). To this end we recall thatU
is assumed attractive, U ′(r)/r � 〈r〉−β , hence, by Lemma 2.2,

A �
U ′(r τ

i j )

r τ
i j

� a〈r τ
i j 〉−β � c〈t〉− β

2−2β , r τ
i j = |xτ

i − xτ
j |.

We now invoke Lemma 1.1, which implies

1

N

∑
i

|v̇i |2 = 1

N

∑
i

∣∣∣∣∣∣
1

N

∑
j

U ′(r τ
i j )

r τ
i j

(xτ
i − xτ

j )

∣∣∣∣∣∣
2

� c〈t〉−η 1

N 2

∑
i, j

|xτ
i − xτ

j |2, η = 2β

1 − β

(5.5)
Therefore, the last termon the right of (5.4) does not exceed� ε(t)〈t〉η 1

N

∑
i |v̇i |2

and choosing ε(t) as in (5.3) with α = η yields

d

dt
Ê(t) � −τ

4

1

N

∑
i

|v̇i |2 − ε0(10 + t)−η

4

1

N

∑
i

|vi |2. (5.6)
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9 As before, since U is bounded, it has at most quadratic growth,

1

2N 2

∑
i, j

U (|xτ
i − xτ

j |) �A
1

2N 2

∑
i, j

|xτ
i − xτ

j |2 � C〈t〉 2β
1−β

1

N

∑
i

|v̇i |2 = C〈t〉η 1

N

∑
i

|v̇i |2,

and we conclude the sub-exponential decay

d

dt
Ê(t) � −c〈t〉−ηÊ(t) � Ê(t) � Ce−t1−η

, (5.7)

which implies the same decay rate of E(t). ��

6. Anticipation Dynamics with Repulsive–Attractive Potential

In this section we prove Theorem 3. The assumption
∑

i xi = ∑
i vi = 0

amounts to saying that x := x1 = −x2, v := v1 = −v2. Replacing U (|x|) by
U (2|x|) and r0 by r0/2, (AT) becomes{

ẋ = v

v̇ = −∇U (|xτ |) (6.1)

where U (r) has a local minimum at r = r0 > 0 with U ′′(r0) = a > 0.
We use polar coordinates {

xτ
1 = r cos θ

xτ
2 = r sin θ

(6.2)

and {
vr = v1 cos θ + v2 sin θ

vθ = −v1 sin θ + v2 cos θ
. (6.3)

Then (6.1) becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = vr − τU ′(r)

θ̇ = vθ

r

v̇r = −U ′(r) + v2θ

r

v̇θ = −vrvθ

r

. (6.4)

We will focus on perturbative solutions near r = r0, vr = vθ = 0. Write r :=
r0 + δr , and there hold the approximations

U (r) ≈ a

2
δ2r , U ′(r) ≈ aδr , U ′′(r) ≈ a (6.5)

9 We may assume without loss of generality, that the two time invariant moments vanish,∑
xi = ∑

vi = 0, and hence 1
N
∑

i |xτ
i |2 = 1

2N2

∑
i, j |xτ

i − xτ
j |2.
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Observe that our assumed initial configuration in (1.24) implies, and in fact is
equivalent to the assumption of smallness on the anticipated energy, E(0) � 2(1+
τ)ε. Theorem 3 is a consequence of the following proposition on the polar system
(6.4):

Proposition 6.1. (polar coordinates) There exists a constant ε > 0, such that if the
initial data is small enough,

E0 :=
(
U (r) + 1

2
v2r + 1

2
v2θ

)
|t=0

� ε, (6.6)

then the solution to (6.4) decays to zero at the following algebraic rates:

δr � C〈t〉−1 ln1/2 〈t〉, vr � C〈t〉−1 ln1/2 〈t〉, vθ � C〈t〉−1/2. (6.7)

Proof. Fix 0 < ζ � min{ r02 , 1} as a small number such that

a

2
� U ′′(r) � 2a, ∀δ2r � ζ, (6.8)

and as a result,

a

2
|δr | � |U ′(r)| � 2a|δr |, a

4
δ2r � U (r) � aδ2r , ∀δ2r � ζ. (6.9)

We start from the energy estimate for the anticipated energy E(t) := U (r)+ 1

2
v2r +

1

2
v2θ ,

d

dt
E(t) = U ′(r) · (vr − τU ′(r)) + vr ·

(
−U ′(r) + v2θ

r

)
+ vθ · −vrvθ

r
= −τU ′(r)2

Therefore, for any positive ε � a

4
ζ to be chosen later, if E0 � ε, then

δ2r � 4

a
U (r) � 4

a
ε < ζ, v2r � ε (6.10)

hold for all time which in turn implies that (6.9) holds. Next we consider the cross
terms

d

dt
(−vrv

2
θ ) = −

(
−U ′(r) + v2θ

r

)
v2θ − 2vrvθ

−vrvθ

r
= −v4θ

r
+U ′(r)v2θ + 2

v2r v
2
θ

r
,

(6.11)
and

d

dt
(−U ′(r)vr ) = −U ′′(r)vr · (vr − τU ′(r)) −U ′(r)

(
−U ′(r) + v2θ

r

)

= −U ′′(r)v2r + τU ′′(r)vrU ′(r) +U ′(r)2 −U ′(r)
v2θ

r

(6.12)
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We now introduce the modified energy

Ê(t) := U (r) + 1

2
v2r + 1

2
v2θ − cvrv

2
θ − cU ′(r)vr ,

depending on a small c > 0 which is yet to be determined. A straightforward
calculation, based on (6.9) shows its decay rate does not exceed

d

dt
Ê(t) = −τU ′(r)2 − c

r
v4θ − cU ′′(r)v2r

+ c

(
U ′(r)v2θ + 2

v2r v
2
θ

r

)
+ c

(
τU ′′(r)vrU ′(r) +U ′(r)2 −U ′(r)

v2θ

r

)

� −τ
a2

4
δ2r − c

2r0
v4θ − c

a

2
v2r

+ c

(
2a|δr |v2θ + 4

v2r v
2
θ

r0

)
+ c

(
4τa2|vrδr | + 4a2δ2r + 4a|δr |v

2
θ

r0

)
,

and by Cauchy-Schwarz

d

dt
Ê(t) � −τ

a2

4
δ2r − c

2r0
v4θ − c

a

2
v2r

+ c

(
1

κ
aδ2r + κav4θ + κ

2

r0
v4θ + 1

κ

2

r0
v4r

)

+ c

(
2κτa2v2r + 1

κ
2τa2δ2r + 4a2δ2r + 1

κ

2a

r0
δ2r + κ

2a

r0
v4θ

)

= −
(

τ
a2

4
− c

κ

(
a + 2τa2 + 4κa2 + 2a

r0

))
δ2r

− c

(
1

2r0
− κ(a + 2

r0
+ 2a

r0
)

)
v4θ − c

(
a

2
− 1

κ

2

r0
v2r − 2κτa2

)
v2r ,

(6.13)
with κ ∈ (0, 1) which is yet to be determined. We want to guarantee that the three
pre-factors on the right are positive. To this end, we first fix the ratio

c

κ
= τ a2

8

a + 2τa2 + 4a2 + 2a
r0

(6.14)1

so that the first pre-factor is lower-bounded by τ a2
8 . Then we choose

κ � min

{
1,

1
4r0

a + 2
r0

+ 2a
r0

,

a
4

2τa2

}
(6.14)2

so that the second pre-factor, the coefficient of v4θ , becomes larger than
c

4r0
. Finally,

the third pre-factor is also positive because (i) a small enough κ was chosen in
(6.14)2, and (ii) a key aspect in which vr can be made small enough to compensate
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for small κ , so that the negative contribution of − 1

κ

2

r0
v2r can be absorbed into the

rest: indeed, if

v2r �
a
8

1
κ

2
r0

= ar0
16

κ (6.14)3

then

c

(
a

2
− 1

κ

2

r0
v2r − 2κτa2

)
� c

(
a

2
− 1

κ

2

r0

a
8

1
κ

2
r0

− a

4

)
= ca

8
.

Therefore, (6.13) implies the decay rate

d

dt
Ê(t) � −η1(δ

2
r + v4θ + v2r ), η1 = min

{
τ
a2

8
,

c

4r0
,
ca

8

}
, (6.15)

provided (6.9) and (6.14)1–(6.14)3 are satisfied.
Moreover, we claim that Ê is comparable to the original anticipated energy E .

Indeed, if in addition

c

√
ar0
16

κ � 1

4
(6.16)1

holds, then in view of (6.14)3, c|vrv2θ | � 1

4
v2θ , and if

c � min
{1
8
,
1

4a

}
, (6.16)2

holds, then in view of (6.9),

c|U ′(r)vr | � ca(δ2r + v2r ) � ca
(4
a
U (r) + v2r

)
� 1

2

(
U (r) + 1

2
v2r

)
.

It follows that
1

2
E(t) � Ê(t) � 2E(t), (6.17)

provided ((6.16)1)–((6.16)2) are satisfied. These last two conditions are clearly met
for small enough κ: recall that the ratio c/κ was fixed in ((6.14)1) then

κ �
a + 2τa2 + 4a2 + 2a

r0

τ a2
8

min

{√
ar0,

1

8
,
1

4a

}
(6.18)1

suffices to guarantee ((6.16)1)–((6.16)2). Thus, we finally choose small enough κ

to satisfy both ((6.14)2),((6.18)1), and small enough ε < min
{a
4
ζ,

ar0
16

κ
}
so that

(6.10) and ((6.14)3) hold. By now we proved (6.15) and (6.17). Finally, notice that
for small enough δr , vr we have

δ2r + v4θ + v2r � δ4r + v4θ + v4r � 1

3
(δ2r + v2θ + v2r )

2 � 1

3
min

{ 1

a2
, 1
}
E2(t).
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We conclude, in view of (6.15) and (6.17),

d

dt
Ê(t) � −ηÊ2(t) � Ê(t) � 1

ηt + 1/Ê(0)
, η = η1

12
min

{
1

a2
, 1

}
.

It follows that |vθ | � C〈t〉−1/2.
To get a better decay rate for δr and vr , we use yet another modified energy

functional,

̂

E(t) := U (r) + 1

2
v2r − c1U

′(r)vr ,

for which we find

d

dt

̂

E(t) = − τU ′(r)2 − c1U
′′(r)v2r + vrv

2
θ

r
+ c1

(
τU ′′(r)vrU ′(r) +U ′(r)2 −U ′(r)

v2θ

r

)

� − τ
a2

4
δ2r − c1

a

2
v2r + 2vrv2θ

r0
+ c1

(
4τa2|vr δr | + 4a2δ2r + 4a|δr |v

2
θ

r0

)

� −
(

τ
a2

4
− c1

κ1

(
2τa2 + 4κ1a

2 + 2a

r0

))
δ2r − c1

(
a

2
− κ1

1

r0
− κ1 · 2τa2

)
v2r

+
(

1

c1κ1r0
+ c1κ1

2a

r0

)
v4θ .

By similar choices of c1 and κ1, one can guarantee that

̂
E(t) is equivalent to δ2r +v2r ,

and the coefficients of δ2r and v2r are positive. Therefore

d

dt

̂

E(t) � −η2

̂

E(t) + Cv4θ � −η2

̂

E(t) + C〈t〉−2 (6.19)

This gives ̂

E(t) = e−η2t

̂

E(0) + C
∫ t

0
e−η2(t−s)(1 + s)−2 ds (6.20)

We estimate the last integral for large enough t ,

∫ t

0
e−η2(t−s)(1 + s)−2 ds �

(∫ t− 1
η2

ln 〈t〉
0

+
∫ t

t− 1
μ
ln 〈t〉

)
e−η2(t−s)(1 + s)−2 ds

� 〈t〉−1
∫ t

0
(1 + s)−2 ds +

(
1 + (t − 1

η2
ln 〈t〉)

)−2 1

η2
ln 〈t〉

� 〈t〉−2 + 2

η2
〈t〉−2 ln 〈t〉.

(6.21)

This shows that

̂

E(t) � C〈t〉−2 ln 〈1 + t〉, and therefore |vr | + |δr | � C〈t〉−1

ln1/2 〈1 + t〉. ��
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Finally, we conclude by noting that the last bound on δr tells us that∣∣|xτ
1(t) − xτ

2(t)| − r0
∣∣ � C〈t〉−1 ln1/2 〈1 + t〉, |v1(t) − v2(t)| � C〈t〉−1/2.

Observe that this bound on relative anticipated positions is in fact equivalent to the
claimed statement of the current positions,

∣∣|x1(t)−x2(t)|−r0
∣∣ � 〈t〉−1 ln1/2 〈1 + t〉,

which concludes the proof of Theorem 3.

Remark 6.1. Numerical examples [20, sec. 1] show that the rate vθ = O(t−1/2) is
optimal. Therefore,

θ(t) = θ0 +
∫ t

0

1

r(s)
vθ (s) ds = O(

√
t),

which means that θ needs not converge to any point, even for near equilibrium
initial data. Thus, although we trace the dynamics of δr , vr , vθ using essentially
perturbative arguments, the dynamics of (6.1) is not.

Remark 6.2. The optimal algebraic rate of vθ in Proposition 6.1 can also be derived
via centre manifold reduction. To this end, rewriting the system (6.4) in terms of
perturbation variables δr , vr and vθ ,⎡

⎣ δ̇r
v̇r
v̇θ

⎤
⎦ =

⎡
⎣ τa 1 0

−a 0 0
0 0 0

⎤
⎦
⎡
⎣ δr

vr
vθ

⎤
⎦+

⎡
⎢⎣

−τ
(
U ′(r0 + δr ) − aδr

)
−(U ′(r0 + δr ) − aδr

)+ v2θ
r0+δr− vrvθ

r0+δr

⎤
⎥⎦ .

Since the 2 × 2 leading minor is stable, the centre manifold near the equilibrium,
Wc, can be parametrized by vθ ,

Wc =
{

(δr , vr , vθ )

∣∣∣ δr = v2θ

r0
+ O(v3θ ), vr = v3θ

r0
+ O(v3θ )

}
.

It follows that vθ is governed by v̇θ = −vrvθ

r
= −τ

v3θ

r0
+ O(v4θ ), which implies

its algebraic decay of order 〈t〉−1/2.

7. Anticipation Dynamics: Hydrodynamic Formulation

The large crowd dynamics associated with (AT) is captured by the macroscopic
density ρ(t, x) : R+ × R

d �→ R+ and momentum ρu(t, x) : R+ × R
d �→ R

d ,
which are governed by the hydrodynamic description (1.26)

⎧⎨
⎩

ρt + ∇x · (ρu) = 0

(ρu)t + ∇x · (ρu ⊗ u) = −
∫

∇U (|xτ − yτ |)ρ(t, x) dρ(t, y), xτ := x + τu(t, x).

The flux on the left involves additional second-ordermoment fluctuations,P , which
can be dictated by proper closure relations, e.g., [8,11,19,21,24]. As in [24], we
will focus on the mono-kinetic case, in which case P = 0.
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To study the large time behavior we appeal, as in the discrete case, to the basic
balance between energy and enstrophy: here we consider the anticipated energy

E(t) :=
∫

1

2
|u(t, x)|2ρ(t, x) dx + 1

2

∫ ∫
U (|xτ (t) − yτ (t)|) dρ(t, x) dρ(t, y).

(7.1)
Away fromvacuum, the velocity fieldu(x) = u(t, x) satisfies the transport equation

ut (t, x) + u · ∇xu(t, x) = A(ρ,u)(t, x), (7.2a)

where A(ρ,u) denotes the anticipated interaction term

A(ρ,u)(t, x) := −
∫

∇U (|xτ (t) − yτ (t)|) dρ(t, y), xτ (t) = x + τu(t, x).

(7.2b)
We compute (suppressing the time dependence)

d

dt
E(t) =

∫
u(x) · (−u · ∇u + A(x)) dρ(x) +

∫
1

2
|u(x)|2(−∇ · (ρu)) dx

+ τ

2

∫ ∫
∇U (|xτ − yτ |) · (−u(x) · ∇u(x) + A(x) + u(y) · ∇u(y)

− A(y)) dρ(x) dρ(y)

+ 1

2

∫ ∫
U (|xτ − yτ |)(−∇ · (ρu)(y))) dρ(x) dy

+ 1

2

∫ ∫
U (|xτ − yτ |)(−∇ · (ρu)(x)) dx dρ(y)

=
∫

u(x) · A(x) dρ(x) + τ

2

∫ ∫
∇U (|xτ − yτ |) · (A(x) − A(y)) dρ(y) dρ(x)

+ 1

2

∫ ∫
∇U (|xτ − yτ |) · (−u(y) + u(x)) dρ(y) dρ(x)

=τ

∫ ∫
∇U (|xτ − yτ |) · A(x) dρ(y) dρ(x)

= − τ

∫ ∣∣∣ ∫ ∇U (|xτ − yτ |) dρ(y)
∣∣∣2 dρ(x).

This is the continuum analogue of the discrete enstrophy statement (1.1), which
becomes apparent when it is expressed in terms of the material derivative,

d

dt
E(t) = −τ

∫ ∣∣∣ ∫ ∇U (|xτ−yτ |) dρ(y)
∣∣∣2 dρ(x) = −τ

∫ ∣∣∣∣ D

Dt
u(t, x)

∣∣∣∣
2

dρ(t, x).

(7.3)

7.1. Smooth Solutions must Flock

We consider the anticipation hydrodynamics (1.26) with attractive potentials,
(1.15)

a〈r〉−β � U ′(r)
r

, |U ′′(r)| � A, 0 < a < A.
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The study of its large time ‘flocking’ behavior proceeds precisely along the lines of
our discrete proof of Theorem 2. Here are the three main ingredients in the proof
of Theorem 4.

Step (i)Webeginwherewe left with the anticipated energy balance (7.3), which
we express as

d

dt
E(t) = −

∫ ∣∣∣ ∫ ∇U (|xτ − yτ |) dρ(y)
∣∣∣2 dρ(x)

= −
∫ ∣∣∣ ∫ U ′(|xτ − yτ |)

|xτ − yτ | (xτ − yτ ) dρ(y)
∣∣∣2 dρ(x).

We now appeal to the special case of Lemma 4.1 with � = R
d (with variable x),

with probability measure10 dμ = ρ(x) dx, X(x) = xτ ,X(y) = yτ and c(x, y) =
U ′(|xτ − yτ |)

|xτ − yτ | , in which case we have

∫∫
|xτ−yτ |2 dρ(y) dρ(x) � 32


2

λ4

∫ ∣∣∣∣
∫

U ′(|xτ − yτ |)
|xτ − yτ | (xτ − yτ ) dρ(y)

∣∣∣∣
2

dρ(x)

(7.4)

where
 = A andλ are the upper- and respectively, lower-bounds of
U ′(|xτ − yτ |)

|xτ − yτ | ,

d

dt
E(t) = −τ

∫ ∣∣∣ ∫ U ′(|xτ − yτ |)
|xτ − yτ | (xτ − yτ ) dρ(y)

∣∣∣2 dρ(x)

� −
(
min

U ′(|xτ − yτ |)
|xτ − yτ |

)4 ∫∫ ∣∣xτ − yτ
∣∣2 dρ(y) dρ(x).

(7.5)

Step (ii). A bound on the spread of the anticipated positions supported on non-
vacuous states

max
xτ ∈supp ρ(t,·) |x

τ | � c〈t〉η. (7.6)

Arguing along the lines of Lemma 2.2 one finds that (7.6) holdswith η = 1

2(1 − β)
,

hence

a〈t〉− β
2(1−β) � U ′(|xτ − yτ |)

|xτ − yτ | � A, xτ , yτ ∈ supp ρ(t, ·),

and (7.5) implies

d

dt
E(t) = −τ

∫ ∣∣∣ ∫ U ′(|xτ − yτ |)
|xτ − yτ | (xτ − yτ ) dρ(y)

∣∣∣2 dρ(x)

� −τ 〈t〉− 2β
1−β

∫∫
|xτ − yτ |2 dρ(x) dρ(y).

(7.7)

10 Without loss of generality we use the normalization
∫

ρ0(x) dx = ∫
ρ(t, x) dx = 1.
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We are now exactly at the point we had with the discrete anticipation dynamics, in
which the decay of anticipated energy is controlled by the fluctuations of anticipated
position, (1.23).

Step (iii). To close the decay rate (7.7) one invokes hypocoercivity argument
on the modified energy,

Ê(t) := E(t) − ε(t)
∫

xτ · u(x) dρ(x).

Arguing along the lines of Section 5, one can find a suitable ε(t) > 0 which
leads to the sub-exponential decay of Ê(t) and hence of the comparable E(t), thus
completing the proof of Theorem 4.

7.2. Existence of Smooth Solutions—the 1D Case

We study the existence of smooth solutions of the 1D anticipated hydrodynamic
system

⎧⎨
⎩

∂tρ + ∂x (ρu) = 0

∂t u + u∂xu = −
∫

U ′(|xτ − yτ |)sgn(xτ − yτ )ρ(y) dy, xτ = x + τu(t, x),

(7.8)
subject to uniformly convex potential U ′′(·) � a > 0. Let d := ∂xu. Then

∂td + u∂xd + d2 = −(1 + τd)

∫
U ′′(|xτ − yτ |)ρ(y) dy (7.9)

or

d′ = −d2 − c(1 + τd), ′ := ∂t + u∂x , (7.10)

where byuniformconvexity c = c(t, x) := ∫
U ′′(|xτ−yτ |)ρ(y) dy ∈ [m0a,m0A].

The discriminant of RHS, given by (τc)2 − 4c = c(τ 2c − 4) is non-negative, pro-
vided τ 2m0a � 4. In this case, the smaller root of (7.10) is given by

1

2
(−τc −

√
c(τ 2c − 4)) � −1

2
(τm0a +

√
m0a(τ 2m0a − 4)), (7.11)

and the region to its right is an invariant of the dynamics (7.9). We conclude the
following:

Proposition 7.1. (Existence of global smooth solution) Consider the 1D anticipa-
tion hydrodynamic system (7.8) with uniformly convex potential 0 < a � U ′′ � A.
It admits a global smooth solution for sub-critical initial data, (ρ0, u0), satisfying

min
x

u′
0(x) � −1

2
(τm0a +

√
m0a(τ 2m0a − 4)), τ � 2√

m0a
.
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